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Abstract

The spread of a disease is sensitive to the mixing patterns present in the affected

population and to the precautions that the population takes to reduce the transmission

of the disease. We investigate the impact that different mixing assumptions have on the

spread of smallpox in a age-structured differential equation model. We use a normally

mixing population and a population that reduces its number of contacts in response to

knowledge of a smallpox outbreak to compare the effect the population mixing pattern

has on an epidemic. We also consider the impact of heterogeneity in susceptibility (par-

tial immunity) and infectivity within the population on the spread of an epidemic. We

identify a basic reproduction number ℜ0 and based on this threshold parameter we show

how much people have to change their behavior in order for the disease to die out. Differ-

ent mixing patterns lead to differences in disease prevalence, cumulative number of new
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infections and final epidemic size. Furthermore, we develop examples which show that

heterogeneous mixing can lead to more severe epidemics. Our analysis demonstrates that

the combination of residual immunity, realistic mixing patterns and behavioral changes

during an outbreak can play a key role in halting an epidemic such as smallpox.

Key Words: Mixing patterns, infectious diseases, smallpox, mathematical models, ran-

dom mixing, EpiSims, behavioral change, epidemic models.

1 Introduction

Mathematical models of the transmission of infectious agents can be useful tools in understand-

ing patterns of disease spread and assessing the effects of different interventions. The spread

of infectious diseases depends upon the contact patterns in the population. Contact patterns

guide in identifying people with high risk of contracting an infection and where the outbreak

could be effectively intercepted. We investigate how to account for the contact patterns in an

epidemic model to better understand disease spread.

Any realistic model for the spread of an infectious disease must take into account the

mechanism of its transmission, the pattern of mixing among the population, the susceptibility

within the population, the virulence of the infection, the probability of transmission per contact,

and the changes in behavior in the affected population in response to an epidemic. Several

mathematical models have studied the effects of different mixing patterns [4, 23, 25, 27, 28, 31,

32] using mixing functions or mixing matrices defined in compartmental models and networks

models [52]. Techniques have been developed to incorporate non-random mixing into epidemic

models, including restricted mixing [29], proportional mixing [19, 42], preferred mixing [20, 42],

selective mixing [33], and non-proportionate mixing [1]. Network epidemic models have been

used to investigate sequential partnership patterns [34], concurrency in relationships [34], the

impact of various social biases on the spread of epidemics [13, 45], and other topics related to

mixing [35]. Network and compartmental epidemic models have been used to model several

infectious diseases; however, very few models have incorporated the impact of realistic mixing

patterns in the presence of population heterogeneity.

The assumption of a homogeneously mixing population is often sufficient to obtain general

insights. However, it can lead to an overestimation of the final epidemic size and the magnitude

of the interventions needed to stop an epidemic. Heterogeneity within the population, such

as age-dependent susceptibility, can also contribute to overestimating the interventions needed

when designing public health policy. For example, smallpox was eradicated worldwide in the
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1970s. Because the vaccine itself carries potential health risks, the United States discontinued

smallpox vaccinations in 1972 [6]. Therefore, more than half of the US population has received

the smallpox vaccine, and recent studies have shown that some of these individuals may still

have partial protection against smallpox [2, 10]. This protection should greatly reduce the

number of severe and fatal cases of disease expected in a bioterrorist attack. Therefore, there

are clear age-dependent differences in susceptibility that must be taken into account when

developing models that will guide public health policy during a smallpox attack.

Age-dependent risks and residual protection have been mostly neglected in the mathemat-

ical models proposed to guide response strategies for a smallpox outbreak [5, 11, 30, 36, 39].

Only some mathematical models for the dynamics of smallpox have incorporated the effects of

residual immunity. Halloran et al. [18] used a stochastic simulation of smallpox in a commu-

nity of 2000 people in their efforts to compare mass vaccination versus ring vaccination under

different scenarios. They concluded that ring vaccination would be more competitive in the

presence of preexisting immunity. However, they divided the population into two classes (with

and without residual immunity) and did not consider age-dependent risks, heterogeneous mix-

ing and behavioral changes. Nishiura et al. [41] used a deterministic model in a population

of 1 million people to study the impact of long-lasting vaccine-induced immunity. They di-

vided the population into three classes (never vaccinated, one vaccination, two vaccinations),

also assumed homogeneous mixing and did not incorporate age-dependent risks and behavioral

changes. They observed that an epidemic could be greatly affected by the residual immunity

within the population and that vaccination should be given in accordance to immunity level.

Responses to an infectious disease in a community can reduce morbidity and mortality;

for example, significant changes in behavior among men who have sex with men have been

credited with decreases in prevalence of HIV/AIDS and other sexually transmitted diseases

[17, 20, 24, 51]. Recent experiences with the SARS epidemics show that an outbreak of a

deadly disease like smallpox would generate dramatic behavioral changes [8, 37, 43]. Del

Valle et al. [48] used a deterministic model to study the effects of behavioral changes during a

smallpox outbreak. They demonstrated that behavioral changes can have a dramatic impact in

slowing an epidemic and reducing the total number of cases. However, they used homogeneous

mixing and differences in susceptibility based on age were not incorporated

Age structure in epidemic models has been considered by many authors, because of the

recognition that transmission dynamics of certain diseases cannot be correctly described by the

traditional epidemic models with no age dependence. The age incidence of smallpox depends

mainly on the acquired immunity of the exposed population due to vaccination and on the

age-dependent risks present in the population. Therefore, we develop an age structured model
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for the disease transmission dynamics of smallpox in a population that is subjected to residual

immunity and age-dependent risks. We assume that the population is closed (no immigration

and births are considered) and that there is only one disease in operation. Furthermore, we

use different mixing matrices (normal, reduced, random, and segregated) and compare their

effect on the final epidemic size of a smallpox outbreak.

Our results show that different mixing assumptions lead to differences in the disease preva-

lence, the cumulative number of new infections and the final epidemic size. Normal, reduced

and segregated mixing lead to smaller final epidemic sizes and larger susceptible population

when compared to random mixing. Nevertheless, normal mixing can lead to epidemics that

are more severe than segregated mixing. One implication of this result is that heterogeneous

mixing plays an important role in the transmission of the disease. Therefore, in the face of

an epidemic, the population not only has to reduce their number of contacts, but they have to

reduce their mixing patterns.

Furthermore, our simulations show that when residual immunity is considered, the final

epidemic size is reduced for all mixing assumptions. We also observe that the age groups with

high susceptibility are less affected by the disease than those with less susceptibility. Therefore,

one implication of this result is that if vaccination of smallpox becomes necessary, the smallpox

vaccine should be given according to the immunity present in the population.

We also identified the epidemic threshold parameter ℜ0 and show that ℜ0 is proportional

to the daily average number of contacts per person. Therefore, based on this finding we

can estimate how much people have to reduce their contacts in order for the epidemic to die

out. This result can guide public health officials in persuading the population to change their

behavior by reducing their number of contacts depending on the value of ℜ0.

The paper is structured as follows. After introducing the discrete age structured model, we

derive an expression for the basic reproduction number. Next, we introduce the different mixing

matrices and estimate the model parameters. The simulations and the sensitivity analyses

illustrate the relative importance of different mixing parameters and behavioral changes on

the epidemic predictions. Finally, the epidemiological implications of these mixing matrices are

discussed.

2 The Mathematical Model

We formulate the transmission dynamics model for a single outbreak of smallpox in a heteroge-

neously mixing population. We divide the population into three main epidemiological classes,

susceptible (S), infected (I) and recovered (R) [26]. These classes are further divided into
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age groups with heterogeneous mixing and different susceptibilities and infectiousness base on

age and residual immunity from previous smallpox vaccinations. This allows us to take into

account the differences in infectivity for diseases such as smallpox, i.e. latent or incubation

period, prodromal period and symptomatic or infectious period. We will apply the model to

a smallpox outbreak, and assume that the course of the outbreak is short compared with the

life of an individual, therefore, births, aging and natural deaths are not included.

For our multi-group SIR model with staged progression [26, 40], we consider 91 age groups

(n = 91) with 1-year intervals: 1, 2, 3, · · · , 88, 89, 91 and 3 infection stages (m=3; exposed,

prodromic and infectious). Using the transfer diagram in Figure 1, we arrive at the following

nonlinear system of differential equations:

dSi

dt
= −λi(t)Si(t), for 1 ≤ i ≤ n

dIi1

dt
= λi(t)Si(t) − (ωi1 + µi1)Ii1(t),

dIik

dt
= ωi,k−1Ii,k−1(t) − (ωik + µik)Iik(t), for 2 ≤ k ≤ m

dRi

dt
= ωimIim (1)

where λi(t) is the force of infection (defined later); ωik is the relative rate of disease progression

for a person in age group i and infection stage k; and µik is the disease-induced relative death

rate for age group i in infectious stage k.

We define λi as the relative rate at which the susceptible population in age group i gets

infected and progresses to stage Ii1. We calculate this as the sum of the rate of disease

transmission from each infected subgroup, Iik, to the susceptible group, Si. This means that

a susceptible person in group i can get infected by an infected person in any group or infection

stage. That is,

λi(t) =
91
∑

j=1

3
∑

k=1

λijk(t). (2)

Here, λijk is the rate of disease transmission from the infected people Ijk in stage k of age group

j to the susceptibles in Si in age group i. We define λijk in (2) as the product of the number of

contacts per unit time that each individual in age group i has with age group j; the probability

of disease transmission per contact between an infected in group j and a susceptible in group

i (which is the product of the susceptibility αi of someone in Si, the infectivity ξjk and the

probability of transmission Pij based on the average duration of contacts between age groups i
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and j); and the fraction of contacts that are infected. That is,

λijk =







Number of

Contacts per

Unit Time













Probability of

Disease Transmission

per Unit Time













Fraction of

Contacts that

are Infected






,

λijk = (γij(t)) (αiξjkPij)
(

Ijk(t)

Nj(t)

)

, (3)

the numerator of (Ijk(t)/Nj) gives the fraction of individuals of age j who are in infected stage

k, and the denominator, Nj(t), is the total population size in age group j. That is

Nj(t) = Sj(t) +
m
∑

k=1

Ijk(t) + Rj(t). (4)

Summing over all the infection stages gives the force of infection from all infecteds to the

susceptibles in group i. Multiplying this quantity by the number of susceptibles in age group

i as in (1) gives the rate of change of new infecteds.

2.1 Definition of the mixing

The pattern of contacts between different age groups plays an essential role in determining the

spread of disease. We assume people in each age group behave the same way when selecting

a contact, but have biases between age groups. In other words, mixing within each age group

is assumed to be homogeneous but there is heterogeneous mixing among the age groups. This

mixing between age groups is one of the most important factors in modeling diseases. The

mixing depends on the desirability of an active individual, the acceptability of his/her potential

contacts, and the availability of these potential contacts.

Let dij be the desirability of people in age group i to have a contact from age group j; that

is, dij is the fraction of people in age group j with whom an individual in age group i desires

forming a contact. Thus dij describes the desirability of people in age group i to have a contact

from age group j and the acceptability of people in age group j to people in age group i.

Under the condition that enough potential contacts are available, the probability ρij that

a contact forms between individuals from age group i and age group j, is the product of the

availability of age group i for age group j, dji, and the desirability of age group i for age group

j, dij. Note that we can also alternatively define ρij as the preference for a contact between

age group i and age group j. With this alternative definition, the ρij ’s are no longer restricted

to being less than or equal to 1.
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We define ai to be the preferred number of social contacts per unit time for a person in age

group i. The probability that a contact is with a person from age group j is ajNj/(
∑

l alNl)

where Nj is the total population size of age group j defined in (4). This also characterizes the

availability of contacts in age group j. Hence, the probability of a contact forming between

individuals from age group i and age group j is ρijajNj/(
∑

l alNl) (again, if we think of ρij as

a preference then this now becomes a preference of forming contacts.)

The desirability matrix need not be symmetric (i.e. dij 6= dji, when i 6= j), but the

probability of a contact forming is symmetric since ρij = dijdji implies ρij = ρji. Also, we note

that there is no constraint on
∑

j dij, which may be less than or greater than one.

Two special cases of the model (1) with the infection rate, (2) and (3), are the restricted

mixing model when dij = 0 (hence ρij = 0, i 6= j) and the proportional mixing model when

dij = 1, for {i, j} = 1, · · · , n .

We denote the number of contacts per unit time of people in age group i with people in age

group j by Cij . The number of contacts with people in age group i that people in age group j

have is also Cij , that is Cij = Cji. These are the balance constraints that need to be satisfied at

all times. In multi-group models where an attempt is made to directly control the number of

contacts formed between age groups, these balance conditions usually are artificially enforced.

However, in the selective mixing model, the balance constraint

Cij = ρij
ajNj
∑

l alNl

aiNi = ρji
aiNi
∑

l alNl

ajNj = Cji (5)

is automatically satisfied. Thus, by using the acceptability dij or desirability dji of an individual

from age group i to an individual from age group j as the primary control variable in these

models (instead of the number of contacts an individual from age group i desires from age

group j), the balance constraints become a natural consequence of the model, rather than an

artificially imposed constraint.

The number of contacts per individual per unit time in many multi-group models is assumed

to be constant. When all dij’s equal one (proportional mixing), this is also true for the selective

mixing model. However, if the mixing is biased, the actual number of contacts, denoted by γi,

for the selective mixing model will vary in time depending on the combination of desirability,

acceptability, and availability.

Define P̃ (i) as the probability that an individual in age group i finds a contact from any

age group. The actual number of contacts per person in age group i,

γi = aiP̃ (i) = ai

(

n
∑

j=1

ρij
ajNj
∑

l alNl

)

, (6)
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reaches its maximum ai only for the proportional mixing, where ρij ≡ 1 (i.e. everyone is

acceptable as a contact). Therefore, the average number of contacts per person (6) is the sum

over the contacts with each age group, that is,

γij(t) = aiρij
ajNj(t)

∑n
l=1 clNl(t)

with ρij = dijdji. (7)

If the mixing is biased, the acceptability and the availability of contacts must be taken into

consideration and a limitation may occur. Then ρij ≤ 1, and hence γi ≤ ai. However, we think

of the ρij ’s as preferences, then it is possible for the actual number of contacts per person, γi,

to be greater than the preferred number of contacts, ai.

3 The Basic Reproduction Number, ℜ0

The biological meaning of the basic reproduction number is the average number of secondary

cases produced by one infected individual during the infected individual’s entire infectious

period. In an epidemic model the magnitude of ℜ0 determines whether or not an epidemic

occurs. Typically, the disease dies out if ℜ0 < 1, whereas if ℜ0 > 1 the disease persists in the

population. In a simple SIR model, let γ be the average number of contacts per unit time

per individual, β be the probability of transmitting the infection per contact, τ be the mean

duration of the infection period, and S0/N0 be the initial susceptible fraction. In this model,

the basic reproduction number is given by the following intuitive formula:

ℜ0 = γβτ
S0

N0
. (8)

This formula gives insight into the transmission dynamics of infectious diseases for this very

simple epidemiological model.

The “next-generation operator” approach [50] can be used to find an expression for the

basic reproduction number ℜ0 for our epidemic model. The computation is done by linearizing

system (1) around the disease-free steady state and by identification of conditions that guarantee

growth in the infected classes. The disease-free steady state has I11, I12, I13, I21, I22, I23, · · · ,

I91,1, I91,2, I91,3 equal to zero with initial susceptible sizes S0
i positive. The resulting 273

dimensional linearized system is of the form Ẋ = (F − V)X, where

X =
[

I11 I12 I13 · · · I91,1 I91,2 I91,3

]T

,

The F matrix has nonzero entries in every column of rows 1, 4, 7, etc. and all zeros in rows 2,

3, 5, 6, 8, 9, etc. The entries in the 3 columns 3(j − 1) + 1, 2, 3 of row 1 + 3(i − 1) are

γijαiξj1Pij

N0
j

,
γijαiξj2Pij

N0
j

,
γijαiξj3Pij

N0
j

.
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The V matrix is block diagonal with 3x3 blocks of the form

B =







ωj1 + µj1 0 0

−ωj1 ωj2 + µj2 0

0 −ωj2 ωj3 + µj3






,

which has an inverse of the form

B−1 =







1
ωk1+µk1

0 0
ωk1

ωk1+µk1

1
ωk2+µk2

1
ωk2+µk2

0
ωk1

ωk1+µk1

ωk2

ωk2+µk2

1
ωk3+µk3

ωk2

ωk2+µk2

1
ωk3+µk3

1
ωk3+µk3






=







1
ωk1+µk1

0 0
qk2

ωk2+µk2

1
ωk2+µk2

0
qk3

ωk3+µk3

qk3/qk2

ωk3+µk3

1
ωk3+µk3







with

qj1 = 1, qj2 =
ωj1

ωj1 + µj1
, qj3 =

ωj1

ωj1 + µj1

ωj2

ωj2 + µj2
. (9)

These qjk factors are the fractions of infectives in the j age group that reach stage k. FV−1

will have zeros in the rows 2, 3, 5, 6, 8, 9, etc., so the eigenvectors must also have zeros in

these rows 2, 3, 5, 6, 8, 9, etc. Thus we can consider the 91x91 matrix consisting of the rows

1 + 3(i − 1) and columns 1 + 3(j − 1) of FV−1. This matrix E will have ij entries given by

Eij = αiS
0
i γijPij(

ξj1

ωj1 + µj1

+
ξj2qj2

ωj2 + µj2

+
ξj3qj3

ωj3 + µj3

)/N0
j . (10)

The basic reproduction number ℜ0 is the largest eigenvalue of the matrix E = FV−1 [50]. We

cannot obtain an explicit form of the ℜ0 for our general model (1). Therefore, ℜ0 will be

estimated numerically for a given set of parameter values for the different mixing assumptions.

4 Mixing Matrices

The goal in this study is to investigate the impact that different mixing assumptions have on

disease spread. Our study makes use of four different mixing models that we call normal or

realistic mixing, reduced mixing, random mixing and segregated mixing.

The force of infection λi is the relative rate at which susceptibles of age i acquire infection

at that age. Homogeneous mixing means that contacts of a person are randomly distributed

among all others in the population. One immediate implication of this assumption is that

the force of infection is the same for all ages. However, mixing in a population is usually

heterogeneous, so contacts are not random. For heterogeneous mixing, the forces of infection

reflect the age-related changes in the degree of mixing and contact, within and among age

groups, which are important factors for understanding disease spread. Furthermore, changes
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in behavior can alter the contact patterns in the population, which are also key in understanding

disease spread.

We use the techniques developed in Del Valle et al. [49] to estimate age-dependent trans-

mission matrices for our model. That is, we used the population of Portland, Oregon (Figure

2) used by the simulation studies of TRANSIMS [9] and EpiSims [3, 12, 47]. We calculated the

total number of contacts Cij (Figures 3 & 5) generated by the population over one randomly

selected day and then evaluated the average number of contacts γij per person. We obtained

γij , by dividing the total number of contacts Cij by the total population Ni in age group i

[49]. For the normal, reduced and segregated mixing matrices we used the average duration

of contact Tij reported on the surveys used by TRANSIMS and EpiSims [49]. However, for

the random mixing matrix, we used a uniform distribution between 0 and 24 hours to assign a

duration to each contact. Using the probability function Pij given by

Pij = 1 − e−ζTij , (11)

with ζ = 3, we estimated the probability of transmission for the entire population.

Finally, we used the average number of random contacts γij , the susceptibility αi = 1, the

infectivity ξjk = 1, and the probability of transmission Pij matrices to estimate the adequate

contact matrix βij for each mixing assumption (Figures 4 & 6). Notice that we used the values

of αi = 1 and ξjk = 1 for Figures 4 and 6; however, these values will be estimated later according

to the susceptibility of smallpox present in the population and the infectivity of smallpox at

different infected stages. The transmission matrix is the average number of adequate contacts

between a susceptible of age i with people of age j.

4.1 Normal Mixing

The transmission matrix (Figure 4) is the average number of adequate contacts between a

susceptible of age i with people of age j; and was estimated using the same techniques described

in Del Valle et al. [49]. The normal contact matrix is formed by two blocks of mixing generated

by children/young adults and adults and a weak coupling between parents and their children.

Please refer to Del Valle et al. [49] for more details on the estimation of this adequate contact

matrix.

4.2 Reduced Mixing

Changes in behavior in the affected population in response to knowledge of an epidemic not only

reduce the number of contacts of the entire population, but they change the mixing patterns
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in the population. That is, if schools close as a preventive measure to control an epidemic,

the contacts of school children will change from children of their own age to their parents or

family members. Therefore, one must carefully develop mixing matrices that could represent

realistic mixing patterns in the presence of behavioral changes. Currently, EpiSims does not

incorporate behavioral changes in their simulations, because of the lack of data to validate these

changes. Thus, for simplicity we incorporate behavioral changes by reducing the number of

contacts generated in the population. That is, we multiply the contact matrix (Figure 3) by

a desired factor. For our numerical simulations we reduced the number of contacts by half,

that is, we multiplied Figure 3 by 0.5. While recognizing the crude introduction of behavioral

changes into this model, this model will serve as the foundation for later models that include

validated behavioral changes in response to an outbreak.

4.3 Random Mixing

If random mixing is used, then a potential contact is randomly selected from the entire pop-

ulation. This implies a larger probability of meeting people from the age groups with larger

sizes. Therefore, we used a random number generator to create random contacts from the

age distribution of the population of Portland (Figure 2). In order to compare the random

mixing matrix with the normal contact matrix (Figure 4), we matched the total of contacts

of the randomly mixing population with the total number of contacts of the normal mixing

population as described in [49]. The adequate contact matrix βij (Figure 6) is consistent

with the age distribution of the population. That is, there are well defined regions (given by

different colors) of adequate contacts, which are due to the age distribution of the population.

In general, the population is more likely to have adequate contacts with people from the age

groups with larger sizes (35-45 years) than with people from the age groups with smaller sizes

(> 55 years), which is consistent to what one would expect for a randomly mixing population.

4.4 Segregated Mixing

Our final model of the contact selection process allows for mixing only with people of the same

age. That is, each age group will have the same number of contacts but all their contacts will

be with their own age group. To construct a mixing matrix consistent with this idea and with

the other mixing assumptions, we lumped the total number of contacts generated by each age

group by a normally mixing population (Figure 3) in the diagonal. This mixing assumption

will allow us to determine the factors that are driving the spread of the epidemic. That is,

whether the number of contacts are driving the epidemic or the heterogeneous mixing among
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the population are driving the epidemic.

5 Parameter Estimation

The smallpox infected period is divided into three phases: exposed or incubation period, pro-

dromal period and infectious period. The incubation period for smallpox has been reported

to be from 7 to 19 days, but the most common reported range is 10-14 days with a mean of 12

days [14, 44, 46]. Thus the latent phase has a relative rate of ωi1 = 1/12. Afterward, small-

pox patients experience a prodromal phase with symptoms such as fever, malaise, prostration,

headache, backache, and vomiting. This period lasts for 2 to 4 days with a mean of 3 days

[7, 14]. Therefore, the prodromal relative rate is ωi2 = 1/3. Data on previous outbreaks show

that patients have very low infectivity during the prodromal phase [11, 15, 38]. Therefore, we

assume that during both the exposed period and the prodromal period, individuals are non-

infectious. Patients remain contagious for a period of approximately 14 to 17 days with a mean

of 16 days [14, 21, 22]. Hence, we set the relative rate in the infectious phase as ωi3 = 1/16 and

the infectivity as 1. Once these patients recover, they have complete, permanent immunity.

The United States discontinued smallpox vaccinations in 1972 because the vaccine itself

carries potential health risks [6]. Therefore, more than half of the US population has received

the smallpox vaccine, and recent findings have shown that these individuals may still have

partial protection against smallpox [2, 10]. Therefore, we assume that all individuals born

after 1972 are completely susceptible to smallpox. Thus, the relative susceptibility of people

between the ages of 1 and 33 is set to 1. We assume that individuals between the ages of 34

and 65 have partial immunity to smallpox and thus the relative susceptibility is set to 0.3 [10].

Furthermore, we assume that people between the ages of 66 and 80 have a relative susceptibility

of 0.7, and people between the ages of 81 and 90 have a relative susceptibility of 0.9 due to

their age-dependent risk of infection [10].

The relative death rate of smallpox (variola major) varies, but is reported to be about 30%

among unvaccinated individuals [14, 21, 22]. The fraction in the model dying from smallpox is

µi3/(ωi3 + µi3), setting this equal to 0.3 yields µij = 0.0268. Smallpox deaths usually occurred

eighteen days or more after symptoms began [21]. Therefore, we assume that the relative

death rate for each infection stage is 0, 0 and 0.0268, respectively.

Recent estimates on the transmission of smallpox indicate that 1 infected person may infect

3-6 others [16]. Therefore, ℜ0 was set equal to 3 for both the normal and random mixing

matrices. However, for the reduced contact matrix the number of contacts were reduced by

half, resulting in ℜ0 equal to 1.5. Notice, that by reducing the number of contacts by half,
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ℜ0 was also cut by half. This result gives us an estimate of how much people must reduce

their contacts in order to halt an epidemic. Therefore, if the number of contacts were reduced

to less than one third, there would be no epidemic because ℜ0 would be less than 1. For the

segregated matrix, we used the normal contact matrix and lumped all the entries of each age

group into the diagonal. This process will result in different values of ℜ0 for each age group.

6 Numerical Simulations

We used a differential equation solver designed for multi-groups SIR models with staged progres-

sion developed by Chitnis et al. [40] to examine the impact that the four mixing assumptions

have on the final epidemic size and final susceptible population size for our model. All simu-

lations assume that 1 infected individual from each age group enter the incubation phase after

being successfully infected during a smallpox attack. We use the baseline parameters in Table

2 in our simulations and the synthetic population of Portland, Oregon (Figure 2) as the initial

population for each age group.

Table 1 summarizes the results that the four different mixing assumptions have on the final

epidemic size and final susceptible population size. The final epidemic size includes both the

total number of recovered cases (shown in Figures 7, 8, 9, and 10) and the total number of

people who died from the disease (not included in Figures but given by D = N − (S + I)) at

120, 360, and 1000 days after the introduction of smallpox into the population. One column in

Table 1 identifies the basic reproduction number ℜ0 for each mixing assumption. The final day

in Table 1 is the day on which the number of smallpox cases reach 99% of the final epidemic

size, which is a measure of the length of the smallpox outbreak.

The first entry in Table 1 shows the simulations results for normal mixing. With normal

mixing, we obtain a cumulative total smallpox cases of 1, 321, 590 after 1000 days and a final day

of 324. However, when we assume reduced mixing, resulting in a smaller number of contacts

per day, the epidemic decreased to 686, 530 and the final day was extended to 841. When

random mixing is used, the number of smallpox cases increases to 1, 429, 620 and a final day

is reduced to 280. For segregated mixing, the number of smallpox cases further decreases to

1, 207, 470 and the final day is extended to 1325. The total susceptible, recovered and disease

prevalence for all mixing assumptions described in Table 1 are shown in Figures 7, 8, 9, and

10.

All age groups are affected differently by the disease due to the differences in susceptibility.

Figure 11 shows the cumulative numbers of recovered cases, the susceptible population and

disease prevalence for age groups i = 20, 50, 65 and 85 for a normally mixing population. Age
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groups between 1 and 33 resemble the distributions shown in Figure 11, Part a. Notice that

since we assumed no residual immunity for these age groups, they are the most affected by the

disease than the rest of the population. Age groups between 34 to 61 and 66 to 71 resemble the

distributions shown in Figure 11, Part b, even though they had different susceptibilities. Age

groups between 62 to 65 and 72 to 81 resemble the distributions shown in Figure 11, Part c;

notice that these age groups are the least affected by the disease. Finally, age groups between

82 and 91 resemble the distributions shown in Figure 11, Part d.

When the mixing among the population is reduced because of the assumption of behavioral

changes, the number of total cases decreases dramatically. The cumulative numbers of recovered

cases, the susceptible population and the disease prevalence for some age groups are shown in

Figure 12. Notice that the combination of residual immunity and behavioral changes plays a

key role in halting the spread of the epidemic. In Figure 12: Part a resembles the distributions

of age groups 1-33; Part b resembles the distributions of age groups 32-65; Part c resembles the

distributions of age groups 66-80; and Part d resembles the distributions of age groups 81-91.

When random mixing is assumed, all age groups are affected accordingly to their assumed

susceptibility (Figure 13). That is, in Figure 13: Part a resembles the distributions of age

groups 1-33; Part b resembles the distributions of age groups 32-65; Part c resembles the

distributions of age groups 66-80; and Part d resembles the distributions of age groups 81-91.

Since for segregated mixing ℜ0 is different for all age groups, the epidemic curves vary drastically

for all age groups (Figure 14). Age groups between 1 and 33 are still the most affected as seen

with previous mixing assumptions due to their lack of residual immunity (Figure 14, Part a).

Most age groups manage to maintain a large number of susceptible individuals at the end of the

epidemic because of their present residual immunity (Figure 14, Part b & d). However, there

are some groups that avoid infection due to their ℜ0 being less than unity, these age groups are

65, 76 and 86 (Figure 14, Part c).

7 Sensitivity Analyses

Although the parameter values were estimated from epidemiological data, there is still some

uncertainty in their values. The sensitivity analyses in this section examine the effects of

changes in the number of index cases, the initially infected age group, the residual immunity

present in the population, and the infectiousness in the prodromal stage.

Index Cases: The number of initially exposed individuals has a major impact on the final

epidemic size for all mixing assumptions. Since we are not including any intervention strategies,

the initially exposed individuals govern the epidemic in conjunction with the reproduction

14



number.

Initially Infected Age Group: If instead of introducing an infected individual into each age

group, we introduce an infected individual into a particular age group, this results in different

epidemic curves. Random mixing is not sensitive to changes in the initially infected age group,

while normal and reduced mixing are slightly sensitive to changes in the initially infected group.

Residual Immunity: Differences in the level of residual immunity present in the population

influence the cumulative number of infected persons. The number of smallpox cases increases

when the level of residual immunity is reduced in the population and decreases when the level

of residual immunity is increased in the population. Thus the simulation results are sensitive

to changes in the level of residual immunity present in the population.

Infectiousness: We determined the sensitivity to changes in the relative infectivity of the

prodromal phase. Most epidemiological data suggests that infectiousness in smallpox is cor-

related with rash onset, so that patients in the prodromal phase are generally not considered

infectious [11, 15, 38]. However, some studies have suggested that individuals are highly infec-

tious during the prodromal phase [30, 18]. Therefore, if we set the relative infectivity of each

infection stage (exposed, prodromal and infectious) to 0, .5 and 1. For all mixing assumptions,

the cumulative number of smallpox cases slightly increases and the final susceptible population

size slightly decreases. Thus the model is slightly sensitive to changes in the relative infectivity

value of the prodromal stage.

Basic reproductive number: The basic reproductive number ℜ0 determines the average num-

ber of secondary cases generated by each index case. Because of the lack of interventions in

our model, ℜ0 governs the growth of the entire epidemic. Thus, all mixing matrices are highly

sensitive to the reproductive number. That is, as ℜ0 increases, the total number of smallpox

cases increases and as ℜ0 decreases, the total number of smallpox cases decreases.

8 Conclusions

Contact patterns are an important part of the transmission of infectious diseases. The as-

sumption of homogeneous mixing is often sufficient to obtain general insights. However, a

better knowledge of contact patterns is necessary for a more accurate estimate of the effect

of residual immunity on future disease incidence. More detailed knowledge of human contact

patterns could lead to studies that shed light on the long-term evolutionary consequences of

public health policies.

We used a computer simulation model to investigate the impact that different mixing as-

sumptions have on outcomes related to epidemic spread in the presence of population het-
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erogeneity. Four mixing scenarios were discussed: normal mixing, reduced mixing, random

mixing and segregated mixing. Our results confirm the epidemiological picture proposed in

previous works, that mixing assumptions have a great influence in the overall behavior of epi-

demic spreading and that residual immunity can play a key role in halting an epidemic such as

smallpox.

The numerical simulations in Section 6 show that random mixing results in a greater number

of new infections than non-random mixing even in the presence of residual immunity. With

normal mixing, the total number cases is reduced and the final susceptible population size is

greater. Furthermore, when behavioral changes are introduced, the total number of cases is

further reduced and the final susceptible population size is increased. We also observed that the

disease affected different age groups differently based on their assumed immunity. That is, age

groups with less residual immunity are more affected than age groups with more immunity. One

implication of these results is that if vaccination of smallpox becomes necessary, the smallpox

vaccine should be given according to the immunity present in the population. That is, those

without prior smallpox vaccination should be given the vaccine first.

We studied segregated mixing to determine some of the factors that are driving the epidemic.

Our results suggest that the heterogeneous mixing patterns have a greater impact on spreading

the epidemic than the number of contacts. Therefore, in the face of an epidemic, the population

not only have to decrease the number of contacts, but they have to stop mixing in order to

halt an epidemic. Furthermore, we found that ℜ0 is proportional to the average number of

contacts. Therefore, we can estimate how much people have to reduce their contacts in order

to stop an epidemic. That is, for an epidemic with ℜ0 equal to 3, the population needs to

decrease their number of contacts to less than one third to stop the epidemic.

Although parameter values were estimated using data, there is still uncertainty associated

with their values. We found that all the simulation results are sensitive to the number of index

cases, the level of residual immunity assumed to be present in the population and the value of

the reproduction number. We also found that the model is slightly sensitive to changes in

the relative infectivity of the prodromal phase. Furthermore, random mixing is not sensitive

to changes in the initially infected age group, while normal and reduced mixing are moderately

sensitive.

One of the limitation of our model is the way we implemented behavioral changes. We

reduced the number of contacts by half to take into consideration the changes in behavior that

the population will undertake based on knowledge of an epidemic. However, human behavior

is among the most complex systems observed. Behavioral changes will not only reduce the

number of contacts but will change the structure of the contact network. The SARS epidemic
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is an excellent example of the dramatic behavioral changes implemented by the population

as a whole and by government officials. Behavioral changes can greatly reduce the size and

length of an epidemic. However, more data is needed to understand and predict the changes

in behavior that a population will undertake in the presence of disease and uncertainty.

Another limitation of our study is the lack of intervention strategies. We were interested

on investigating the effects of different mixing assumptions, therefore, for simplicity we did not

include intervention strategies such as isolation, quarantine and vaccination. Nevertheless,

one must be aware that in the presence of a deadly disease like smallpox, many intervention

strategies will take place that will further decrease the spread of the disease.

We conclude that for simulations of smallpox to be useful in guiding public health policy,

they must consider the impact of heterogeneous mixing, residual immunity and behavioral

changes. Residual immunity within the population as well as behavioral changes implemented

in the affected population can greatly affect the final epidemic size and reduce the vaccinations

needed during an outbreak. It is therefore critically important to know the level of immunity

in real populations from epidemiological studies and predict how the population will respond

in the presence of an epidemic. The exact structure of the contact patterns in the general

population is, to a large extent, still unknown. Therefore, more research is needed to increase

our understanding of the impact of human contact networks and human behavior on the spread

of infectious diseases, and to assess the implications of this for the planning of public health

policy.
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9 Figures and Tables

Figure 1: Schematic relationship for the multi-group SIR model with staged progression with

91 age groups and 3 infection stages. The arrows that connect the boxed groups represent

movement of individuals from one group to an adjacent one. Susceptible individuals Si get

infected at a rate, λi, and then progress through various infection stages at rates of disease

progression, ωij, before entering the recovered state. Infected individuals die from the disease

at a rate, µij.
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Figure 2: Age distribution of the synthetic population for the city of Portland. The population is

made of 1,615,860 individuals of ages ranging from 0 to 90 years (x-axis). The y-axis illustrates

the number of people in age group j, Nj . Portland is somewhat unusual because of the influx

of 25-45 year old people. This results in a two-hump (bimodal) distribution with mean of 34.37

and median of 33.
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Figure 3: The total number of contacts between age groups estimated using a normally mixing

population (EpiSims contact network). The contact rates are defined by the elements of the

nxn matrix, Cij, where Cij represents the total number of contacts of all people of age i with

people of age j per day.
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Figure 4: Transmission matrix βij estimated using a normally mixing population (EpiSims

contact network). The transmission matrix is the average number of adequate contacts between

a susceptible of age i with people of age j. We observe that the transmission among school

children is very high compared to the rest of the population.
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Figure 5: The total number of random contacts between age group i and j is the same as

between age group j and i, resulting in a symmetric graph. The contact rates are defined by

the elements of the nxn matrix, Cij, where Cij represents the total number of random contacts

of all people of age i with people of age j per day.
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Figure 6: Transmission matrix βij estimated using a randomly mixing population. The trans-

mission matrix is the average number of adequate contacts between a susceptible of age i with

people of age j. Notice that the probability of transmission is determined by the size of the

population in each age group.
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Table 1: Cumulative total smallpox cases for different mixing assumptions.

Mixing Matrix ℜ0 120 days 360 days 1000 days Final daya

Normal Mixing 3 33,460 1,317,460 1,321,590 324

Final Susceptible

Population size 1,582,400 298,400 294,270 307,486

Reduced Mixing 1.5 1,060 54,460 686,530 841

Final Susceptible

Population size 1,614,800 1,561,400 929,330 936,195

Random Mixing 3 56,760 1,429,100 1,429,620 280

Final Susceptible

Population size 1,559,100 186,760 186,240 200,536

Segregated Mixing 152,960 786,760 1,207,470 1325

Final Susceptible

Population size 1,462,900 829,100 408,390 386,349

a Days from infection of index cases until outbreak is controlled (when the number of cases reaches 99% of the

final epidemic size).
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Figure 7: Solutions of the multi-group SIR model with staged progression for a normally mixing

population (EpiSims mixing). The figure shows the total susceptible, infected and recovered

populations for a period of 1000 days.
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Figure 8: Solutions of the multi-group SIR model with stage progression for a population that

has changed its behavior due to knowledge of a smallpox outbreak (reduced mixing). The figure

shows the total susceptible, infected and recovered populations for a period of 1000 days.
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Figure 9: Solutions of the multi-group SIR model with staged progression for a randomly mixing

population. The figure shows the total susceptible, infected and recovered populations of the

whole system for a period of 1000 days.
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Figure 10: Solutions of the multi-group SIR model with staged progression for a segregated

mixing population. The figure shows the total susceptible, infected and recovered populations

of the whole system for a period of 4000 days.
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Figure 11: Solutions of the multi-group SIR model with stage progression for age groups i =

20, 50, 65 and 85 for a normal contact matrix. Notice the impact that partial immunity has on

the final epidemic size on age groups < 34 years of age.
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Figure 12: Solutions of the multi-group SIR model with stage progression for age groups i =

20, 50, 75 and 85 for a reduced contact matrix. The conjunction of residual immunity and

behavioral changes have a great impact on stopping the epidemic for all age groups.
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Figure 13: Solutions of the multi-group SIR model with stage progression for age groups i =

20, 50, 75 and 85 for a random mixing matrix. The age groups with low or no partial protection

are the most affected
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Figure 14: Solutions of the multi-group SIR model with stage progression for age groups i =

20, 50, 65 and 85 for a segregated contact matrix. Notice that the disease affects all groups

differently due to the different values of ℜ0 for each age group.

36



Parameter Description Dimension Baseline Reference

N Initial population size 1 1,615,860 [47]

Ii1 Initial infected population 1 60 See text

αi Susceptibility of a person in Si for i = 1, ..32 1 1 [10]

αi Susceptibility of a person in Si for i = 33, ..., 65 1 0.3 [10]

αi Susceptibility of a person in Si for i = 66, ..., 80 1 0.7 [10]

αi Susceptibility of a person in Si for i = 81, ..., 91 1 0.9 [10]

ξik Relative infectivity of each age group i 1 (0,0,0.1) [11, 38]

ξik Relative infectivity of each infection stage k 1 1 See text

ωik Relative rates of disease progression for age group i Day−1 (1/12,1/3,1/16) [14]

ωik Relative rates of disease progression for each stage k 1 1 See Text

µik Relative death rate for age group i 1 (0,0,0.0268) [14]

µik Relative death rate for each stage k 1 1 See text

Table 2: Parameter definitions and values that fit the cumulative number of cases for the model.
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